Titre : | Analyse numérique matricielle appliquée à l'art de l'ingeneiur : 1.Méthodes directes | Type de document : | texte imprimé | Auteurs : | Patrick Lascaux, Auteur ; Raymond Thédor, Auteur | Editeur : | Dunod | Année de publication : | 1998 | Importance : | 229 | Format : | 17X24 CM | ISBN/ISSN/EAN : | 978-2-10-005334-6 | Langues : | Français (fre) | Index. décimale : | 519.4/LAS | Résumé : | La modélisation des problèmes que l'on rencontre dans les sciences de l'ingénieur, et dont certains sont présentés dans ce livre, conduit à la résolution de systèmes d'équations en dimension finie. Ainsi le calcul scientifique repose-t-il essentiellement sur la résolution de systèmes linéaires - le cas échéant, au sens des moindres carrés - et la recherche de valeurs et vecteurs propres.
Cet ouvrage en deux volumes (1. Méthodes directes et 2. Méthodes itératives) contient un exposé des principales méthodes, depuis les plus classiques (élimination de Gauss, surrelaxation, puissance itérée, QR,...) et leurs extensions (matrices creuses, itérations de sous-espaces,...) jusqu'aux plus récentes (gradient conjugué préconditionné, multigrille, Lanczos,... ).
En plus de l'exposé mathématique des méthodes et de la démonstration de leur convergence, les différents aspects de l'évaluation pratique des algorithmes sont présentés : généralité d'application, précision et stabilité aux erreurs d'arrondi, rapidité de calcul, place mémoire nécessaire, facilité de programmation, essais numériques,...
Ce livre, qui présente dans un langage accessible aux étudiants, techniciens et ingénieurs, une synthèse des méthodes de l'analyse numérique matricielle, intéressera tous ceux qui utilisent le calcul scientifique. Grâce à des rappels préliminaires, sa lecture ne nécessite que la connaissance d'un cours élémentaire d'algèbre matricielle. | Note de contenu : | Révisions - préliminaires
Exemples modèles de problèmes
Conditionnement
Méthodes directes pour la résolution de systèmes linéaires
Méthodes directes pour les matrices creuses
Résolution de problèmes de moindres carrés |
Analyse numérique matricielle appliquée à l'art de l'ingeneiur : 1.Méthodes directes [texte imprimé] / Patrick Lascaux, Auteur ; Raymond Thédor, Auteur . - [S.l.] : Dunod, 1998 . - 229 ; 17X24 CM. ISBN : 978-2-10-005334-6 Langues : Français ( fre) Index. décimale : | 519.4/LAS | Résumé : | La modélisation des problèmes que l'on rencontre dans les sciences de l'ingénieur, et dont certains sont présentés dans ce livre, conduit à la résolution de systèmes d'équations en dimension finie. Ainsi le calcul scientifique repose-t-il essentiellement sur la résolution de systèmes linéaires - le cas échéant, au sens des moindres carrés - et la recherche de valeurs et vecteurs propres.
Cet ouvrage en deux volumes (1. Méthodes directes et 2. Méthodes itératives) contient un exposé des principales méthodes, depuis les plus classiques (élimination de Gauss, surrelaxation, puissance itérée, QR,...) et leurs extensions (matrices creuses, itérations de sous-espaces,...) jusqu'aux plus récentes (gradient conjugué préconditionné, multigrille, Lanczos,... ).
En plus de l'exposé mathématique des méthodes et de la démonstration de leur convergence, les différents aspects de l'évaluation pratique des algorithmes sont présentés : généralité d'application, précision et stabilité aux erreurs d'arrondi, rapidité de calcul, place mémoire nécessaire, facilité de programmation, essais numériques,...
Ce livre, qui présente dans un langage accessible aux étudiants, techniciens et ingénieurs, une synthèse des méthodes de l'analyse numérique matricielle, intéressera tous ceux qui utilisent le calcul scientifique. Grâce à des rappels préliminaires, sa lecture ne nécessite que la connaissance d'un cours élémentaire d'algèbre matricielle. | Note de contenu : | Révisions - préliminaires
Exemples modèles de problèmes
Conditionnement
Méthodes directes pour la résolution de systèmes linéaires
Méthodes directes pour les matrices creuses
Résolution de problèmes de moindres carrés |
| |