Titre : | Introduction à l'analyse numérique | Type de document : | texte imprimé | Auteurs : | Jacques Rappaz, Auteur ; Marco Picasso, Auteur | Editeur : | presses polytechniques et universitaires romandes | Année de publication : | 1998 | Importance : | 247 | Format : | 16x23cm | ISBN/ISSN/EAN : | 978-2-88074-363-5 | Langues : | Français (fre) | Index. décimale : | 518/RAP | Résumé : | Cet ouvrage présente une introduction aux notions mathématiques nécessaires à l'utilisation des méthodes numériques employées dans les sciences de l'ingénieur. La plupart des phénomènes physiques, chimiques ou biologiques, issus de la technologie moderne, sont régis par des systèmes complexes d'équations aux dérivées partielles. La résolution numérique de ces systèmes d'équations au moyen d'un ordinateur nécessite des connaissances approfondies en mathématiques. Ce livre a donc pour but de fournir au lecteur les notions mathématiques de base qui lui permettront d'aborder ce sujet.
Ce livre présente toutes les notions de base permettant de résoudre numériquement les problèmes de l'ingénieur. Les outils de base de l'analyse numérique sont présentés dans les 9 premiers chapitres. La résolution numérique des équations aux dérivées partielles est abordée dans les 5 derniers chapitres. De nombreux exemples, figures et exercices corrigés illustrent la présentation.
Public : Etudiants du 1er cycle universitaire en sciences de l'ingénieur, en physique et en mathématiques, ainsi qu'à tous ceux qui désirent s'initier à la simulation numérique et au calcul scientifique. | Note de contenu : | Problèmes d'interpolation
Dérivation numérique
Intégration numérique. Formules de quadrature
Résolution de systèmes linéaires. Elimination de Gauss. Systèmes mal conditionnés. Systèmes surdéterminés.
Décomposition LU. Décomposition de Cholesky
Résolution de systèmes linéaires par des méthodes itératives
Méthodes numériques pour le calcul des valeurs propres d'une matrice symétrique
Equations et systèmes d'équations non linéaires
Equations différentielles
Différences finies et éléments finis pour des problèmes aux limites unidimensionnels
Une méthode d'éléments finis pour l'approximation de problèmes elliptiques
Approximation des problèmes paraboliques. Problèmes de la chaleur
Approximation de problèmes hyperboliques. Equation de transport et équation des ondes
Approximation de problèmes de convection-diffusion |
Introduction à l'analyse numérique [texte imprimé] / Jacques Rappaz, Auteur ; Marco Picasso, Auteur . - [S.l.] : presses polytechniques et universitaires romandes, 1998 . - 247 ; 16x23cm. ISBN : 978-2-88074-363-5 Langues : Français ( fre) Index. décimale : | 518/RAP | Résumé : | Cet ouvrage présente une introduction aux notions mathématiques nécessaires à l'utilisation des méthodes numériques employées dans les sciences de l'ingénieur. La plupart des phénomènes physiques, chimiques ou biologiques, issus de la technologie moderne, sont régis par des systèmes complexes d'équations aux dérivées partielles. La résolution numérique de ces systèmes d'équations au moyen d'un ordinateur nécessite des connaissances approfondies en mathématiques. Ce livre a donc pour but de fournir au lecteur les notions mathématiques de base qui lui permettront d'aborder ce sujet.
Ce livre présente toutes les notions de base permettant de résoudre numériquement les problèmes de l'ingénieur. Les outils de base de l'analyse numérique sont présentés dans les 9 premiers chapitres. La résolution numérique des équations aux dérivées partielles est abordée dans les 5 derniers chapitres. De nombreux exemples, figures et exercices corrigés illustrent la présentation.
Public : Etudiants du 1er cycle universitaire en sciences de l'ingénieur, en physique et en mathématiques, ainsi qu'à tous ceux qui désirent s'initier à la simulation numérique et au calcul scientifique. | Note de contenu : | Problèmes d'interpolation
Dérivation numérique
Intégration numérique. Formules de quadrature
Résolution de systèmes linéaires. Elimination de Gauss. Systèmes mal conditionnés. Systèmes surdéterminés.
Décomposition LU. Décomposition de Cholesky
Résolution de systèmes linéaires par des méthodes itératives
Méthodes numériques pour le calcul des valeurs propres d'une matrice symétrique
Equations et systèmes d'équations non linéaires
Equations différentielles
Différences finies et éléments finis pour des problèmes aux limites unidimensionnels
Une méthode d'éléments finis pour l'approximation de problèmes elliptiques
Approximation des problèmes paraboliques. Problèmes de la chaleur
Approximation de problèmes hyperboliques. Equation de transport et équation des ondes
Approximation de problèmes de convection-diffusion |
| |